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ABSTRACT 
 

In a global communication network such as the Internet, maintaining one’s 
privacy is often a daunting task. Few are aware of tools designed to aid in this process, 
such as cryptography, an information scrambler, and steganography, an information 
hider. In this paper a hybrid protocol will be designed that uses both cryptographic and 
steganographic technology so that data may be transmitted securely across an insecure 
communications channel, such as the Internet. While the purpose of this paper is to 
design the SCRYPTO protocol, Appendix A lists the source code of a specific 
implementation of this protocol that I wrote. Please note that this code is the product of 
many hours of development, and that great efforts were made to eliminate all possibility 
of code plagiarism. That said, this code is provided as a supplement to the work presented 
here in order to show that a working implementation is possible. The focus of this paper, 
however, is the protocol itself, not the example code.  
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Introduction 

Communication is the transfer of information from one person to another. The 

desire for privacy is the desire to defend this information transfer from being disclosed to 

anyone other than the intended party. Communication has changed drastically in the past 

decade with the rise of a globally connected computer network. The open nature of the 

Internet is conducive to violation of privacy by willing individuals.  

The relevance of privacy is directly related to the value of the information being 

communicated. In order to protect one’s privacy, the method of communication must be 

altered to combat the open nature of the Internet. Tools, such as cryptography and 

steganography, are designed to alter reversibly information in a way such that only those 

intended to receive the message can return it to its original state. This is the equivalent of 

locking something valuable in a safe and shipping it to the recipient. The privacy factor is 

controlled by the strength of the safe used. Bruce Schneier, author of Applied 

Cryptography, writes, “There are two kinds of cryptography in this world: cryptography 

that will stop your kid sister from reading your files, and cryptography that will stop 



 

major governments from reading your files.”1 Although the latter kind is not always 

necessary, for the sake of privacy, businesses and individuals should be able to protect 

themselves. The aim of this extended essay is to create a communications protocol 

featuring cryptographic methods and steganographic2 methods such that the individual 

strengths of the methods are maximized while the possibility of exploitation of their 

respective weaknesses is minimized. 

Background Information / Definition of Terminology 

To begin the design of this new protocol, the SCRYPTO3 Protocol, relevant 

terminology must be identified. First of all, cryptography, literally ‘secret-writing,’ is the 

process of transforming information in a way that limits the number of people able to 

reverse this process and have access to the original information. Cryptography is an overt 

process in which anyone can see that a message or data exists, but they cannot understand 

it without reversing the encryption process. On the other hand, steganography, literally 

‘hidden-writing,’ hides information inside other data such that only a limited number of 

people knowledgeable of the communication may know how to extract the hidden data or 

that hidden data is even present. The carrier data, or the data in which the sensitive data is 

hidden, will be called the host data. Steganography is a covert process in that someone 

who sees the transfer of the host data is not immediately aware of the existence of the 

hidden data.  

                                                 
1 Bruce Schneier, Applied Cryptography, 2d ed, Edited by Phil Sutherland, (New York: John Wiley & 
Sons, Inc, 1996) xix. 

2 Steganography is the process of disguising data within other data 
3 SCRPYPTO : S (tegonographic) CRYPTography, a name I picked in development that I decided 

to keep for the protocol  



 

A protocol is a strict set of rules and procedures which governs a series of 

actions.4 A protocol involving a single person is generally very simple, but can still be 

formally defined. For example, a protocol can be defined that describes how to make a 

peanut-butter-and-jelly sandwich, because it can be represented as a series of steps in a 

process. However simplistic that seems, it is essential that every step of a protocol can be 

formally defined, for computers cannot perform anything other than definite and clearly 

defined steps. It is important to note that although the peanut-butter-and-jelly protocol 

describes one way of making that sandwich, it is not the only way to do so. Similarly, the 

protocol being developed will attempt to achieve privacy; however, there are many 

protocols whose goal is privacy, each with their own strengths and weaknesses.  

A complex protocol is one whose constituent steps are often made up of less 

complex protocols. This is a relative term. As the peanut-butter-and-jelly protocol is 

complex relative to the protocols contained within it (i.e., spreading jelly on a piece of 

bread, retrieving an item from the refrigerator), so could the peanut-butter-and-jelly 

protocol be simple relative to a complex protocol, such as a “make lunch” protocol. The 

cryptographic and steganographic methods presented in this paper are all complex in 

nature; however, the goal of this exploration is to develop a complex protocol which 

takes advantage of the strengths afforded by both cryptographic and steganographic 

protocols in an effort to combine them.  

When a protocol involves multiple people, the same rules apply; the scope only 

becomes larger. All persons involved must be completely clear about the steps they are 

                                                 
4 Schneier 21. 



 

required to perform and when.5 Furthermore, all the people in the protocol must abide 

strictly to its rules. One who purposely does not follow the steps of a protocol in order to 

gain an advantage is called a “cheater.”6 In privacy protocols, cheating is a serious 

problem. A well-designed privacy protocol must attempt to deny all access to information 

in all situations except in that of strict adherence to protocol. When discussing privacy-

based communications protocols, generic names for actors in the protocol must be agreed 

upon. Traditionally, communication is desired between Alice and Bob, two fictitious 

characters.7 Eve is traditionally the name of the attacker.8 

In terms of cryptographic protocols, the message or data that is being 

communicated will be referred to as the plaintext. Encryption of the plaintext is the 

process of transforming it into an unintelligible state, while the decryption process returns 

it to its original form.9 These are commonly called encryption algorithms or ciphers. The 

encryption function takes plaintext and converts it into what is known as ciphertext.10 The 

decryption function takes ciphertext and converts it back to plaintext.11 The key to either 

function is restricted only by the specifications of the protocol being used. The most 

commonly limited parameter of the key is its length. The reason for this is because a 

key’s length determines in part how long it will take to “bruteforce” an algorithm.12 All 

cryptography is breakable in time, one simply must try every single key combination; 

                                                 
5 Additionally, for a protocol to be considered complete, it must specifically provide a course of 

action for any situation. Schneier 21. 
6 Schneier 27. 
7 Originated from a simplification of Person A and Person B. 
8 There are many other possible characters involved in security protocols, but these are the three 

most basic. 
9 The encryption and decryption processes, based one or more numerical keys ‘k’, will be denoted 

mathematically as functions Ek and Dk, respectively. 
10 Mathematically: Ek(P) = C, where P = plaintext and C = ciphertext 
11 Mathematically: Dk(C) = P, where P = plaintext and C = ciphertext 
12 To bruteforce an algorithm is to find the plaintext by trying every possible key. 



 

eventually the correct one will be discovered. The key length determines the number of 

possible keys that exist.13 Key length varies from algorithm to algorithm and is measured 

in bits, the fundamental unit of memory for a computer.  

In an ideal cryptographic algorithm, the security lies in the key.14 The individual 

steps of the protocol need not be kept secret; in fact, they should be public. An algorithm 

whose security depends on the secrecy of its process, security through obscurity, loses the 

advantage of peer review. The cryptographic community relies heavily on peer review for 

improving algorithms. A cryptanalyst is one who analyzes ciphers for statistical patterns 

and weaknesses.15 When weaknesses are discovered in an algorithm, then security is less 

dependent upon the key because a cryptanalyst can use weaknesses in the algorithm to 

discover information about the key or plaintext.  

There are different modes in which ciphers operate. A cipher can run in either 

block or stream mode. Block mode is where the cipher operates on chunks of data at a 

time, and stream mode is where the cipher operates on each bit as it is input.16 The former 

is good for sets of pre-assembled data. The latter is good for a situation that requires 

speed where data comes in a flow, and it is unknown how long it would take to fill the 

block size required for a block mode cipher.  

Steganography differs from cryptography in many respects. In steganography the 

goal is not to protect the plaintext from unauthorized reading, but to prevent Eve from 

                                                 
13 The number of possible key combinations in a key n bits long is 2n. Thus if one tests one key per 

second, it will take at most 2n seconds to find the key. Triple-DES has an effective key length of 168 bits, 
thus it will take approximately 1.18 * 1043 years to crack, this is roughly 10 times the estimated age of the 
universe if the universe is 10 billion years old. Of course, in reality, the rate of key tests is greatly 
increased, but the time required for simple bruteforcing is still controlled by an exponential function’s 
growth versus a linear function’s growth. 

14 Eric Cole, Hiding In Plain Sight: Steganography and the Art of Covert Communication, Edited 
by Carol Long (Indianapolis: Wiley Publishing, Inc., 2003) 26-27. 

15 Schneier 1. 
16 Schneier 189. 



 

even knowing that there is sensitive data being communicated. Steganography is thus a 

covert protocol, as opposed to an overt protocol.17 To accomplish this goal, the plaintext 

is hidden within another set of data, known as the host data or host file.   

Goals of the Protocol 

In order to judge the protocol being designed, some basic goals of a security 

protocol must be outlined, and the relevant ones must be selected for use. First and 

foremost, a protocol must be able to secure the data which it transmits. This quality, 

known as confidentiality, is most often controlled by a system such as steganography or 

cryptography.18 A protocol needs some method of verification that a person is who they 

say they are. This is called authentication, and is often verified using digital signatures, 

passwords, or biometric techniques, such as fingerprint readers or iris-scanners.19  

Another important characteristic of a security algorithm is integrity. In this case, 

integrity is the ability of a protocol to detect, prevent, or recover from insertions or 

substitutions that may occur while the message is in transit.20 These alterations are often 

caused by communication errors, but are sometimes intentionally perpetrated by attackers 

trying to cheat the protocol.  

Non-repudiation, another characteristic of a good communication protocols, 

prevents participants in the protocol from later denying that they transmitted data after 

having transmitted it.21 Often the solution to this problem is using time-stamped digital 

signatures, biometrics, or physical key-ring security cards. Finally, a very commonly 

                                                 
17 Cole 52. 
18 Cole 19-20. 
19 Schneier 2. 
20 Cole 20. 
21 This is an important and difficult problem on the Internet because one can simply claim that his 

or her computer had been compromised and that someone else sent it. Schneier 2. 



 

evaluated characteristic of a security protocol is its “availability” or its resistance to 

denial of service or incorrect input.22 Cheaters often hurt protocols by providing input of 

types that protocols are not designed to work with or interpret. 

 Specific goals of the protocol should be specified to guide the selection of the 

individual protocols used. The protocol must be very easy to use with as little user 

interaction as possible, or else many will not use it. The average computer user will feel 

overwhelmed if a protocol requires too much effort or is very complicated. The ultimate 

goal is to achieve a private connection through which a user may send messages or data 

without any extra work. To this end, there should be no key management required on the 

user’s part; the two computers should agree upon a key using an appropriate key 

negotiation protocol. The message transmitted should not be readable by anyone who is 

“listening” in on the connection. Ideally, the transmission of the message should not be 

easily discoverable in the first place. The protocol should also be able to detect or prevent 

the message from being modified in transit. Availability is not important in this instance 

because Alice and Bob supply all input, and both intend to communicate with each other. 

Thus they will not attempt to cheat the protocol. Evaluators such as authentication and 

non-repudiation are less important in this case because this protocol is meant only to 

communicate a message securely. The goal is to keep intruders out, not to police the 

participants in the protocol. If such protection is required, then the specific 

implementation of the protocol could be easily expanded to include a mandatory digital 

                                                 
22 Denial of Service is an attack which aims not to break an algorithm but to disable it by starving 

the host computer of its resources through a flood of input. Cole 21-22. 



 

signature on each message.23 In short, the protocol will be evaluated according to how 

well it achieves the goals outlined above.  

Cryptographic Elements 

There are three main types of cryptographic algorithms. The first type is 

symmetric algorithms, where the same key is used in the encryption process as is used in 

the decryption process.24 This is most commonly used where it is possible to generate a 

common key between the target and recipient. Asymmetric algorithms are the second 

type where a different key is used in the encryption process than is used in the decryption 

process.25 The most common implementation of this second type is the use of a private 

and public key pair. One distributes the public key and anyone who wishes to privately 

communicate may encrypt his or her messages with the recipient’s public key. Only the 

recipient’s private key can decrypt the message.26  

Hash functions are the third main type of algorithm. These are designed so that 

encryption is simple, but decryption is computationally infeasible.27 This is used often 

with password authentication; a remote server need not keep a list of all the users’ 

passwords, only a list of hashes. When someone tries to authenticate, the server compares 

the stored hash with the hash of the entered password. If the two match, then the user is 

authenticated. 

                                                 
23 A digital signature is commonly a public and private key-pair which is akin to a digital 

fingerprint that is used to sign documents. A digital signature is valid as long as the private key remains 
unknown to everyone but the user. This will be discussed later under asymmetric encryption. 

24 Symmetric algorithms have the following mathematical properties: Ek(P) = C and Dk(C) = P 
where P is the plaintext and C is the ciphertext. 

25 Asymmetric algorithms have the following mathematical properties: Ek1(P) = C and Dk2(C) = P 
where P stands for plaintext, C stands for ciphertext, and k1 and k2 are two different keys.  

26 Cole 38. 
27 Mathematically Ek(P) = C, but Dk(C)  



 

The simplest form of electronic cryptography is Exclusive-OR encryption, a 

symmetric algorithm. Ironically, this is the only truly secure (in the ideal sense) form of 

cryptography available.28 Exclusive-Or, or XOR, is a bit operation where two bits are 

compared, and a result is given.29 A plaintext with a length of n bits, requires a key n bits 

long to be truly secure. The key and plaintext are “XORed” together bit by bit to form the 

ciphertext. This ciphertext is completely secure.30 This means that a cryptanalyst will be 

unable to find any true statistical relation between the bits because they are completely 

independent of each other.31 The cryptanalyst must have the key to return the ciphertext 

to plaintext. There is no other way to learn extra information without making 

assumptions. This was the encryption scheme used by the infamous “red telephone” link 

between Washington, D.C. and Moscow during the Cold War.32  

To facilitate the user not having to deal with keys, asymmetric encryption should 

not be used. This is because asymmetric encryption has little use without the involvement 

of a user-managed key pair. Hash encryption is not suitable either because decryption is 

infeasible. Thus, symmetric encryption is the type of encryption that should be used. The 

next problem is how the sender and recipient should decide on a key to use. Since the 

goal is for the user not to need to manage any keys, a key exchange algorithm should be 

used. The irony of symmetric encryption has always been that if the sender can inform 

the recipient of the key without anyone else knowing, then why doesn’t the sender merely 

                                                 
28 Provided that the key is equal in length to the plaintext. 
29 XOR is defined such that: A XOR B = C. Where A, B, and C are individual bits. If A and B are 

both 1 or both 0, then C is 0, if they are not equal, then C is 1. 
30 This type of encryption is known as a one-time pad because once a key is used, it cannot be 

used again. One-time pads are perfectly secure. Francis Litterio, “Why Are One Time Pads Perfectly 
Secure?” Cryptography, The WWW Virtual Library, <http://www.vlib.org/>. 

31 This assumes that Eve has no idea what type of information is being transferred. If she knows 
that it is in English, then she may use statistical occurrences of letters in English mixed with relative 
occurrences of bits in the ciphertext; however, this is an assumption she must make.  

32 Schneier 16-17 



 

give the recipient the secret message at that point? Furthermore, if the only 

communication channel between the two is insecure, then how can they agree on a key? 

A key negotiation algorithm can solve these problems. One of the most prominent of 

these available today is the Diffie-Hellman key negotiation algorithm, which because 

there are few differences between key negotiation algorithms, will be used in this 

protocol due to its simplicity.33  

As for the encryption algorithm, symmetric encryption narrows the choices 

considerably. There are many symmetric algorithms, the best of which is not a clear 

choice. The most commonly used one today is the block-mode Triple-DES algorithm,34 

based on the IBM-developed, NSA-approved35 Data Encryption Standard protocol 

developed in the 1970s.36 The more recent IDEA37 cipher is another promising candidate 

that has stood the test of time. However, Bruce Schneier, an expert cryptographer, 

recently disparaged it for various flaws in its design in an interview posted on 

SlashDot.org, an online computer news forum,  

“If I needed a secure symmetric algorithm for a design, and performance were not 
an issue, I would choose triple-DES. No other algorithm has been as well-studied, 
so nothing can compare in confidence. […] I don't recommend IDEA anymore 
[…] it isn't very fast; […] IDEA is patented, and the terms change regularly. Also, 

                                                 
33 In this system, the sender and recipient computers each pick two private numbers, and exchange 

a total of four numbers. From these 5 numbers, each computer can generate an identical number, k, which 
will be the key. An attacker cannot derive the key with the four numbers communicated; he has to have one 
of the two private numbers. Schneier 513. 

34 The Triple-DES algorithm is currently one of the four official encryption standards of the 
United States government. The Advanced Encryption Standard, however, is generally preferred to Triple-
DES. United States, National Institute of Standards and Technology, Computer Security Resource Center, 
Federal Information Processing Standards Publication 46-3, October 25, 1999, 2. 

35 The National Security Agency of the United States of America is in charge of all the 
government based cryptography research and operations. 

36 The Advanced Encryption Standard (AES) replaced Triple-DES as the National Standard for the 
United States Federal Government in 2001; however, AES is so new that the chance of weaknesses being 
discovered soon is still high. It is therefore not going to be considered for this protocol. United States, 
National Institute of Standards and Technology, Computer Security Resource Center, Federal Information 
Processing Standards Publication 197, November 26, 2001, 5. 

37 International Data Encryption Algorithm, developed in 1990 



 

attacks against IDEA have steadily eaten away at the security margin […] There 
are still no attacks against the full eight-round cipher, and there is no reason to 
believe that any are possible. Still, since there are algorithms with much better 
performance, it seems improper to suggest IDEA.”38  
 

In this protocol, speed is not critical, and it is important that the cryptographic algorithm 

remain secure. Therefore, Triple-DES will be used over the IDEA cipher in the 

SCRYPTO protocol.  

One problem with the original DES is that it is easily breakable using a dedicated 

DES cracking machine. Estimates in 1993 indicated that a $1,000,000 machine could 

crack DES in minutes.39 For this reason, Triple-DES was created. This is simply DES 

performed three times with three different keys. The 3 56-bit keys are strung together to 

create one larger key.40 Little is known about what the U.S. government can do at this 

point, but it is naïve to assume that the NSA has not built a machine to crack DES. 

Whether or not they can easily crack Triple-DES is unknown. 

Steganographic Elements 

There are three main techniques involved in steganographic algorithms: Insertion 

techniques, substitution techniques, and language-generation techniques.41 Insertion-

based steganography involves inserting the plaintext into a file in a place that is not easily 

noticeable; a place that is either no longer used or will never be shown directly to a user. 

For example, in a Microsoft Word document, plaintext can be inserted into the document 

                                                 
38 Bruce Schneier, “Crypto Guru Bruce Schneier Answers” interview by the users of SlashDot.org, 

29 Oct. 1999, http://slashdot.org/interviews/99/10/29/0832246.shtml. 
39 Schneier also believes that the NSA can crack DES in 3 to 15 minutes. Schneier 300.  
40 Triple-DES is a 56-bit block algorithm, and its key is 192 bits long. Although the key is 192 bits 

long, only 168 bits of these are used as input to the algorithm, the remaining 24 bits are used for integrity 
checking.  

41 Cole 108-109. 



 

where placeholders are created for its “undo” feature.42 A user will never see data stored 

in these sections, which makes them ideal for an insertion technique.  

Substitution-based steganography is where the data in the host file is modified 

slightly according to a pattern to represent the plaintext. This is often accomplished by 

modifying small bits of data which are the least significant in a file. One such method 

involves hiding data within image files. Pictures on computers are made up of a grid of 

dots of color called pixels. Each pixel represents color with a number, generally 

anywhere from 8 to 32 bits in length. The least significant bit of each pixel is the one 

which changes the color’s number the least, the binary equivalent of the decimal 1’s 

place. Data is hidden by changing the least significant bit in each pixel of an image based 

on each corresponding bit of plaintext.43 Because only the least significant bit of each 

color is being changed, the picture will rarely look different. To hide a plaintext message 

of length n bits, a picture with n pixels is needed.44  

The major caveat of substitution-based steganography is that is that it often 

requires a very large amount of host data to hide a relatively smaller amount of plaintext. 

To resolve this problem, a generation-based technique can be used to generate a host file 

of the size required to hide the plaintext. This could be a sine wave for an audio file into 

which a secret message could be stored, a fractal image, or it could be a large enough 

chunk of randomly generated text, modeled to English grammar rules in order to fool 

computer scanners.45  

                                                 
42 Cole 111-112. 
43 Cole 114. 
44 Another method similar to this involves editing a document so that every sentence ends in either 

a period or an exclamation point. A period represents 0 and an exclamation point represents 1. To hide 
some data that is n bits long, a document with n sentences is required. 

45 Cole 112-113, 135. 



 

One substitution technique which does not suffer as badly from the requirement of 

a larger host file is one which hides data within the building blocks of the Internet itself. 

The most basic Internet protocols are defined within the TCP/IP protocol suite, and they 

are the driving force behind the Internet today. Parts of this suite, particularly the TCP,46 

are no longer used as they were intended. Parts of the network headers, particularly the 

sequence and IP identification numbers, are no longer actively checked and can be used 

to hide data.47 This technique becomes independent of the size constraints on the host file 

because the host data being transmitted can be generated randomly in real-time. 

To prevent Eve from knowing that an encrypted message is even being 

transmitted, a steganographic algorithm must be selected. The medium or host data is 

what differentiates most all of the steganographic algorithms. An image can be used to 

hide data, although this requires that the user pick out an image and give any 

eavesdroppers good reason to believe that Alice and Bob would be sending images to 

each other. This can involve weeks, even months, of previous communication in which 

pictures of classic cars, for example, are exchanged, until the day that one of the pictures 

slips through undetected with hidden information in it. This sort of user interaction is not 

permitted as per the goals of this protocol.  

Ideally, the steganographic algorithm used must be relatively unaffected by size 

of host data required because for transmitting larger amounts of data, the host message 

could potentially become very large. TCP/IP header encoding is unique in that as the 

message size increases, only the volume of packets sent need be increased. This is good 

                                                 
46 Transmission Control Protocol, designed the University of Southern California is a base 

protocol used by the majority of communications between computers on the Internet. Jon Postel, "RFC-
793: Transmission control protocol," Request for Comments, Information Sciences Institute, University of 
Southern California, Sept. 1981. 

47 Cole 170. 



 

in that it reduces the amount of host data required because small amounts of randomly 

generated data can be sent in each packet. However, it is bad because anyone monitoring 

the volume of packets passing through the network would notice a large number coming 

from the sender’s machine. As with any steganographic algorithm, if Eve is expecting 

steganography to be used then it is not difficult for her to extract the message. But, to the 

unsuspecting attacker, most steganographic attacks work beautifully. TCP/IP header 

encoding is a very recent development, and the sheer volume of traffic flowing through 

most networks makes it infeasible for steganographically-encoded data to be discovered 

by network-wide monitoring. Therefore, an attacker must be specifically scanning the 

sender for the TCP/IP header encoding technique. This is about as good as steganography 

can get; forcing the attacker to make specifically targeted attacks as opposed to general 

scans.48 Because of the lack of size restrictions on TCP/IP header encoding, it will be 

used as the steganographic element in the SCRYPTO protocol. 

Integrity Checking 

At this point, the protocol is nearly complete. It contains both the steganographic 

and cryptographic elements desired and has a method of key exchange; however, thus far 

there is no integrity checking. A major problem with block mode ciphers is that each 

block on its own can be encrypted and decrypted independent of all other blocks. If Eve 

has control of the communication channel, she can insert a block of her own into the 

transmission or rearrange the blocks sent by Alice or Bob.49 A group of techniques 

known as block chaining modes add “feedback” to block ciphers in order to resolve this 

                                                 
48 Cole 55. 
49 This sort of attack is commonly known as “block replay” and can be used to take advantage of 

fixed block size communications, such as bank transactions. Schneier 191-193. 



 

issue.50 Each block is normally just encrypted with the key; however, in a block-chaining 

mode, the ciphertext of the current block is also modified so that it depends on every 

previous block, as well as the key. Therefore, an insertion or rearrangement of the blocks 

will most likely skew the plaintext considerably so that Bob or Alice realizes something 

is wrong. The most common types of block chaining are CBC, CFB, and OFB.51 CFB 

and OFB are more suited for making a block cipher work as a stream cipher (which in 

this situation is not necessary because source data is readily available), and CBC has the 

strictest replay protection.52 Therefore, CBC will be used. 

The integrity checking, however, is not truly complete because if the message is 

changed the decryption process will simply not decipher the correct plaintext, it will not 

know that something is amiss. With the addition of a checksum, or CRC check53, the 

algorithm will be able to verify that the decrypted plaintext is the same as the one 

originally sent by re-computing the checksum of the decrypted ciphertext and then 

comparing the two. A simpler way of using a checksum is to modify the CBC mode used 

slightly into what is called CBCC.54 Using CBCC, the last block of plaintext should be 

                                                 
50 Schneier 193 
51 CBC: Cipher Block Chaining: Ci = Ek(Pi XOR Ci-1), Pi = Ci-1 XOR Dk(Ci) 

CFB: Cipher Feedback Mode: Ci = Pi XOR Ek(Ci-1), Pi = Ci XOR Dk(Ci-1)  
OFB: Output Feedback Mode:  Ci = Pi XOR Si., Si = Ek(Si-1) : Pi = Ci XOR Si, Si = Ek(Si-1) 
Schneier 192-205. 

52 Schneier 192-205. 
53 A Cyclic Redundancy Check (CRC) check produces a number called a checksum that is 

computed using a complex algorithm loosely based on the summation of every byte of data in the plaintext.   
54 Cipher Block Chaining with Checksum: In CBCC, each block of plaintext is “XORed” with 

each previous block of plaintext before being “XORed” with the previous ciphertext block. Using this 
system, the final block of decrypted plaintext will be affected if any of the original ciphertext has changed. 
Therefore, if the final block of plaintext is a constant, then it is trivial to verify that the ciphertext has been 
compromised. Schneier 207-208. 



 

set to some constant, for example “SCRYPTO”.55  If the last block of decrypted plaintext 

is not equal to this, then the protocol knows that the message has been violated.  

Implementation and Conclusion 

  Since the steps of the protocol have been decided, an implementation of this 

protocol can be written within a program. To demonstrate the protocol in action I have 

written a basic file sender and receiver program that implement the protocol.56 The 

protocol now satisfies the security descriptors that were originally selected: integrity and 

confidentiality. It also meets the requirement of little user activity, and all of the 

specifications required of a general protocol.  

In creating this protocol, my goal was to design a hybrid protocol, combining the 

advantages of both steganography and cryptography. Having achieved that goal, the 

question remains: Is it secure? This can only be answered with time and rigorous testing 

by the security community. The upsetting truth about the Internet today is that the amount 

of secured and hidden traffic is miniscule compared to the volume of insecure traffic. 

Many do not know or care that their personal information is being broadcast to anyone 

who wants it. This is particularly relevant in this time of rampant identity theft, wire 

fraud, and anti-privacy laws such as the PATRIOT Act in the United States.57 In other 

countries, individual privacy is often not even considered a right. Using a protocol such 

as the one I have developed, individuals can protect themselves from privacy violation on 

the Internet. 

                                                 
55 The block size of Triple-DES is 64 bits, which is 8 ASCII characters long. For the 8th character, 

something internal could be selected, or in the case of the implementation of the SCRYPTO protocol 
provided in Appendix A, the 8th character is the number of bytes padded onto the original plaintext 

56 See Appendix A for code and documentation. 
57 Under the current law, an Internet Service Provider is forbidden to notify its clients that the 

United States government has ordered a tap of their connection using a Carnivore device. Thus, one’s 
communications could be under direct surveillance without warning.  



 

APPENDIX A: EXAMPLE SCRYPTO IMPLEMENTATION 
 
 
 
 
 

The following code is a basic implementation of the SCRYPTO protocol developed in 
this paper, designed to act as either the sender or receiver of steganographically hidden 

and cryptographically encoded data.   
 

The code was written for the Linux Operating System in the C++ Programming 
Language. It compiles successfully using the GNU C++ Compiler. Sample output is 

provided following the source code. 
 

The program presented here was written completely by myself using these reference 
documents only: the Linux header file reference, the Federal Information Processeing 

Standards Publication 46-3 definition of DES and 3DES, the National Institute of 
Standards and Technology Special Publication 800-17 test vectors for verifying my DES 
implementation, Eric Cole’s description of Diffie-Hellman Key Negotiation in Hiding in 

Plain Sight, and Craig H. Rowland’s “Covert TCP” white paper from 1996.  
 

Great care was taken to prevent any possibility of the code here being taken from 
someone else’s implementation of its sub protocols. I intended this program to be written 

completely by me using reference documents, so I made certain that I did not look at a 
single line of another person’s code while writing this program, not even for guidance.  

 
The following files are included following this page: 

scrypto.cpp       1 page, Page      18 
scrypto.h       1 page, Page      19 
sender.cpp       4 pages, Pages   20-23   
receiver.cpp       4 pages, Pages   24-27 
DES.h        6 pages, Pages   28-33   
DES.cpp       12 pages, Pages 34-45 
diffie.h        1 page, Page      46 
diffie.cpp       4 pages, Pages   47-50 
rawsocket.h       2 page, Page      51-52 
rawsocket.cpp       6 pages, Pages   53-58   
error.h        1 page, Page      59   
error.cpp       1 page, Page      60 
 

The following files show example input and output for the sender and receiver: 
sendlog.txt       1 page, Page 61 
send.txt       1 page, Page 62 
receivelog.txt       1 page, Page 63 
receive.txt       1 page, Page 64 
 
 



 

scrypto.cpp 
 
// This is the entry point of the SCRYPTO demonstration 
//   designed to show an implementation of the stego/crypto protocol 
//   developed in this paper. 
// 
// This file houses the main() procedure and branches either to 
//   receiver_main() or sender_main() based on the role chosen 
//   by the user. 
// 
 
#include "scrypto.h" 
 
int main(int argc, char* argv[]) 
{ 
  cout << "Scrypto Protocol Tester by Russell Ryan : Completed January 
2005" << endl; 
 
  try { //setup our error detection system, one big try/catch 
    while(1) { 
      cout << "Function as a sender or receiver? (S/R):"; 
      char ch; 
      cin.read(&ch, 1); 
 
      if(tolower(ch) == 'r') { 
        receiver_main(); 
        break; 
      } 
      else if(tolower(ch) == 's') { 
        sender_main(); 
        break; 
      } 
 
      cout << "\r\nPlease enter R for receiver or S for sender." << 
endl; 
    } 
  } 
  catch(cError &err) { 
    err.print(); 
    return 0; 
  } 
 
  return 0; 
} 
 
 
 
 
 
 
 
 
 
 
 



 

scrypto.h 
 
//  main include file: quickly includes all relevant headers 
//  and defines relevant macros 
 
#define DEBUG false //if true turns on debug printing 
 
//OS and C library specific includes, mostly linux stuff 
//  General includes 
#include <iostream> 
#include <fstream> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
//  Linux Includes 
#include <endian.h> 
#include <linux/types.h> 
#include <signal.h> 
#include <unistd.h> 
#include <netdb.h> 
//  Linux Socket Includes 
#include <sys/socket.h> 
#include <arpa/inet.h> 
#include <netinet/in.h> 
#include <linux/ip.h> 
#include <linux/tcp.h> 
 
//Use the STL for things like strings 
using namespace std; 
 
//name our own bitlength types for little endian processors 
#define __int64 long long // long long == 64 bits 
#define __int32 long      //      long == 32bits 
#define __int16 short     //     short == 16bits 
#define __int8 char       //      char == 8bits 
 
//Error Handlers 
#include "error.h" 
 
//Connection Portion 
#include "rawsocket.h" //TCP Header Encoding 
 
//Encryption Portion 
#include "des.h"    //DES and 3DES Cryptography 
#include "diffie.h" //Diffie Hellman Key Negotiation 
 
//Helper Functions 
int receiver_main(); //Implements a SCRYPTO Receiver  
int sender_main(); //Implements a SCRYPTO Sender 
 
 
 
 
 
 



 

sender.cpp 
 
//  houses the main entry point for the sender 
//  arranges a transfer, computes keys, encrypts, and sends a file 
//  using the SCRYPTO Protocol by Russell Ryan 
 
#include "scrypto.h" 
 
int sender_main() { 
  cRawSocket *rs = new cRawSocket(false); 
  cDES *crypt = new cDES(CHAINMODE_CHECKSUMCBC); 
  string filename, host; 
  bool prompt; 
  int port,i,percent; 
  FILE *fp; 
  char *fileData; 
  int fileLength; 
 
  prompt = false; 
  while(1) { 
    if(prompt) 
      cout << "Enter address to connect to:"; 
    getline(cin, host); 
 
    if(host.length()<=0) { 
      prompt = true; 
      continue; 
    } 
 
    cout << "Enter port:"; 
    cin >> port; 
 
    if(port<=0 || port>65536) { 
      prompt = true; 
      continue; 
    } 
 
    if(!rs->Connect(host, port)) { 
      cout << "Unable to connect." << endl; 
      prompt = true; 
      continue; 
    } 
 
    break; 
  } 
 
  prompt = false; 
  while(1) { 
    if(prompt) 
      cout << "Enter filename to send:"; 
    getline(cin, filename); 
 
    if(filename.length()<=0) { 
      prompt = true; 
      continue; 
    } 
 



 

    fp = fopen(filename.c_str(), "rb"); //binary mode so it doesn't 
smash the \r\n 
    if(!fp) { 
      prompt = true; 
      cout << "Invalid Filename" << endl; 
      continue; 
    } 
    break; 
  } 
 
  //read data from file 
  fseek(fp, 0, SEEK_END); 
  fileLength = ftell(fp); 
  fileData = new char[fileLength]; 
 
  if(!fileData) 
    throw cError("sender_main() : Insufficient Memory"); 
   
  fseek(fp, 0, SEEK_SET); 
  fread(fileData, 1, fileLength, fp); 
 
  char *ct = NULL; 
  int ctlength; 
 
  //This id sent to verify the start of a transmission 
  //this would NOT be sent in a production grade 
  //implementation of this protocol because it is  
  //identifying information that packet filters 
  //could monitor for 
  rs->Send("SCRY", 4, 4); //"SCRY" w/ IPID 4 signifies start 
 
  cout << "Begin negotiating 196-bit key..." << endl; 
 
  //Perform the key negotiation, act as Alice 
  des_key196 key; 
  key.int_data[0] = diffieAlice(rs); 
  sleep(3); //sleep to make sure our RNG seed changes 
  key.int_data[0] |= ((__int64)(diffieAlice(rs))) << 32; 
  sleep(3); 
  key.int_data[1] = diffieAlice(rs); 
  sleep(3); 
  key.int_data[1] |= ((__int64)(diffieAlice(rs))) << 32; 
  sleep(3); 
  key.int_data[2] = diffieAlice(rs); 
  sleep(3); 
  key.int_data[2] |= ((__int64)(diffieAlice(rs))) << 32; 
  sleep(3); 
   
  //do diffie hellman for the IV,  
  // it's harmless to transmit the IV plaintext, but there's no reason 
not to 
  // do it securely 
  cout << "Begin computing the initialization vector..." << endl; 
 
  //Agree on an IV using Diffie-Hellman, act as Alice 
  des_data196 iv; 
  iv.int_data[0] = diffieAlice(rs); 



 

  sleep(3); //sleep to make sure our RNG seed changes 
  iv.int_data[0] |= ((__int64)(diffieAlice(rs))) << 32; 
  sleep(3); 
  iv.int_data[1] = diffieAlice(rs); 
  sleep(3); 
  iv.int_data[1] |= ((__int64)(diffieAlice(rs))) << 32; 
  sleep(3); 
  iv.int_data[2] = diffieAlice(rs); 
  sleep(3); 
  iv.int_data[2] |= ((__int64)(diffieAlice(rs))) << 32; 
  sleep(3); 
  crypt->setIV(iv); 
 
  ctlength = crypt->encrypt_3des(fileData, fileLength, &ct, key); 
 
  sleep(2); 
  //Send the ciphertext length 
  rs->Send((char*)&ctlength, 4); 
 
  cout << "Sending " << ctlength << " bytes:..." << endl; 
 
  sleep(4); //make SURE they are ready 
   
  percent = 25; 
  //since encrypt_3des returns a buffer with length always divisible by 
8, 
  // it is safe to assume that the ct length is divisible by 2 
  int packets = ctlength/2; 
  //it is also safe to assume that for every packet i, ct[i], ct[i+1] 
is valid 
  
  for(i=0; i<packets; i++) { 
     
    rs->Send("", 0, *((unsigned short*)(ct+i*2))); 
     
    //Print Progress 
    if(percent == 25 && (i*200)/ctlength >= 25) { 
      cout << "25%..."; 
      percent = 50; 
    } 
    else if(percent == 50 && (i*200)/ctlength >= 50) { 
      cout << "50%..."; 
      percent = 75; 
    } 
    else if(percent == 75 && (i*200)/ctlength >= 75) { 
      cout << "75%..."; 
      percent = 100; 
    } 
    else if(percent == 100 && i*2+2 == ctlength) 
      cout << "100% Done." << endl; 
 
    //we'll flood the connection layer  
    //  if we blast it all through at once 
    sleep(2); 
  } 
 
  cout << "File transfer complete... Quitting..." << endl; 



 

   
  //Decryption Test - if we can't decrypt it then they sure can't 
  if(DEBUG) { 
    ctlength = crypt->decrypt_3des(ct, ctlength, &ct, key); 
    for(i=0; i<ctlength; i++) 
      cout << ct[i]; 
    cout << endl; 
  } 
   
  return 0; 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

receiver.cpp 
 
//  houses the main entry point for the receiver 
//  arranges a transfer, computes keys, decypts, and saves a file 
//  sent using the SCRYPTO Protocol by Russell Ryan 
 
#include "scrypto.h" 
 
int receiver_main() { 
  cRawSocket *rs = new cRawSocket(true); 
  cDES *crypt = new cDES(CHAINMODE_CHECKSUMCBC); 
  int port; 
  int i, j, percent; 
  unsigned short ipid; 
 
  //general purpose input pointer and length 
  char *input; 
  int length; 
 
  while(1) { 
    cout << "Enter a port to listen on:"; 
    cin >> port; 
 
    if(port<=0 || port>65536) 
      continue; 
 
    if(!rs->Bind(port)) { 
      cout << "Unable to listen on port " << port << "." << endl; 
      continue; 
    } 
    break; 
  } 
 
  char* temp = new char[128]; 
  int tlen = 128; //arbitrary, enough to hold our start tag 
  while(1) { 
      rs->Recv(&temp, &tlen, &ipid); 
 
      if(tlen == 4 && temp[0] == 'S' && temp[1] == 'C' && temp[2] == 
'R' && temp[3] == 'Y' && ipid == 4) 
        break; //begin the process 
 
      memset(temp, 0, 128); 
      tlen = 128; 
  } 
 
  cout << "Connected... setting up transfer." << endl; 
  cout << "Negotiating 196-bit key..." << endl; 
 
  //Perform the key negotiation, act as Bob 
  //sleep between exchanges to make sure our RNG seed changes 
  des_key196 key; 
  key.int_data[0] = diffieBob(rs); 
  sleep(3); 
  key.int_data[0] |= ((__int64)(diffieBob(rs))) << 32; 
  sleep(3); 
  key.int_data[1] = diffieBob(rs); 



 

  sleep(3); 
  key.int_data[1] |= ((__int64)(diffieBob(rs))) << 32; 
  sleep(3); 
  key.int_data[2] = diffieBob(rs); 
  sleep(3); 
  key.int_data[2] |= ((__int64)(diffieBob(rs))) << 32; 
 
  cout << "Begin Computing Initialization Vector..." << endl; 
  des_data196 iv; 
  iv.int_data[0] = diffieBob(rs); 
  sleep(3);  
  iv.int_data[0] |= ((__int64)(diffieBob(rs))) << 32; 
  sleep(3); 
  iv.int_data[1] = diffieBob(rs); 
  sleep(3); 
  iv.int_data[1] |= ((__int64)(diffieBob(rs))) << 32; 
  sleep(3); 
  iv.int_data[2] = diffieBob(rs); 
  sleep(3); 
  iv.int_data[2] |= ((__int64)(diffieBob(rs))) << 32; 
  sleep(3); 
  crypt->setIV(iv); 
 
  char *ct = NULL; 
  int ctlength; 
   
  //Receive length of ciphertext 
  i=0; 
  length = 4; 
  while(i<4) { 
      if(!rs->Recv(&input, &length)) 
        break; 
 
      for(j=0; j<length;j++) { 
        ((char*)&ctlength)[i] = input[j]; 
        i++; 
      } 
      length = 3-i; 
      delete input; 
  } 
 
  ct = new char[ctlength]; 
  if(!ct) 
    throw cError("receiver_main() - Insufficient Memory"); 
 
  cout << "Receiving " << ctlength << " bytes:..." << endl; 
   
  percent=25; 
  i=0; 
  length = 0; 
  char *ipidptr = (char*)&ipid; 
  while(i < ctlength) { 
      if(!rs->Recv(&input, &length, &ipid )) 
        break; 
 
      length = 2; //ipid is a short 
      for(j=0; j<length; j++) { 



 

        ct[i] = ipidptr[j]; 
        i++; 
      } 
 
      //Output Progress 
      if(percent == 25 && (i*100)/ctlength >= 25) { 
        cout << "25%..."; 
        percent = 50; 
      } 
      else if(percent == 50 && (i*100)/ctlength >= 50) { 
        cout << "50%..."; 
        percent = 75; 
      } 
      else if(percent == 75 && (i*100)/ctlength >= 75) { 
        cout << "75%..."; 
        percent = 100; 
      } 
      else if(percent == 100 && i == ctlength) 
        cout << "100% Done."; 
  } 
  cout << endl; 
     
  //Perform Decryption 
  char *pt; 
  int ptsize; 
  ptsize = crypt->decrypt_3des(ct, ctlength, &pt, key); 
 
  //Now save result to file if everything went ok 
  bool prompt = false; 
  string filename; 
  FILE *fp; 
  while(1) { 
    if(prompt) 
      cout << "Enter filename for received data:"; 
    getline(cin, filename); 
 
    if(filename.length()<=0) { 
      prompt = true; 
      continue; 
    } 
 
    fp = fopen(filename.c_str(), "wb"); //binary mode so it doesn't 
smash the \r\n 
    if(!fp) { 
      prompt = true; 
      cout << "Invalid Filename" << endl; 
      continue; 
    } 
    break; 
  } 
 
  fwrite(pt, 1, ptsize, fp); 
 
  cout << "Contents of " << filename << ":" << endl; 
  for(i=0;i<ptsize;i++) { 
    cout << pt[i]; 
  } 



 

  cout << endl << "EOF" << endl << "File transfer complete... 
Quitting..." << endl; 
 
  return 0; 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

DES.h 
 
#ifndef _DES_H_ 
#define _DES_H_ 
 
//  houses a class definition for an implementation of the  
//  triple DES encryption protocol as per the NIST specifications 
 
//mode defines 
#define MODE_EDES 1 //encrypt DES 
#define MODE_DDES 2 //decrypt DES 
#define MODE_E3DES 3 //encrypt 3DES 
#define MODE_D3DES 4 //decrypt 3DES 
 
#define CHAINMODE_ECB 0 // ECB Mode 
#define CHAINMODE_CBC 1 // CBC Mode 
#define CHAINMODE_CHECKSUMCBC 2 // CBC Checksum Mode 
 
//Bit Manipulation Macros: save lots of typing later 
// General Idea Behind this: 
//  to test a bit: sd & (1 << bit) will equal true if the bit is set 
//  to set a bit: sd |= (1 << bit), will set the bit regardless of its 
current value 
//  to clear a bit: sd &= ~(1 << bit), will set the bit to 0 
//  to toggle a bit: sd ^= (1 << bit) : XOR flips the bit to its 
opposite if they are the same 
 
//64 bit operators 
#define IS_SET_64(sd, bit) (sd & ((__int64)(1)<<(bit))) 
#define FLAG_BIT_64(sd, bit) sd |= ((__int64)(1)<<(bit)) 
#define CLEAR_BIT_64(sd, bit) sd &= ~((__int64)(1)<<(bit)) 
#define TOGGLE_BIT_64(sd, bit) sd ^= ((__int64)(1)<<(bit)) 
#define SET_BIT_64(sd, bit, val) if(val != 0) { FLAG_BIT_64(sd, bit); } 
else { CLEAR_BIT_64(sd,bit); } 
 
//56 bit operators 
#define IS_SET_56(sd, bit) (sd & ((__int64)(1)<<(bit))) 
#define FLAG_BIT_56(sd, bit) sd |= ((__int64)(1)<<(bit)) 
#define CLEAR_BIT_56(sd, bit) sd &= ~((__int64)(1)<<(bit)) 
#define TOGGLE_BIT_56(sd, bit) sd ^= ((__int64)(1)<<(bit)) 
#define SET_BIT_56(sd, bit, val) if(val != 0) { FLAG_BIT_56(sd, bit); } 
else { CLEAR_BIT_56(sd,bit); } 
 
//48 bit operators 
#define IS_SET_48(sd, bit) (sd & ((__int64)(1)<<(bit))) 
#define FLAG_BIT_48(sd, bit) sd |= ((__int64)(1)<<(bit)) 
#define CLEAR_BIT_48(sd, bit) sd &= ~((__int64)(1)<<(bit)) 
#define TOGGLE_BIT_48(sd, bit) sd ^= ((__int64)(1)<<(bit)) 
#define SET_BIT_48(sd, bit, val) if(val != 0) { FLAG_BIT_48(sd, bit); } 
else { CLEAR_BIT_48(sd,bit); } 
 
//32 bit operators 
#define IS_SET_32(sd, bit) (sd & (__int32(1)<<(bit))) 
#define FLAG_BIT_32(sd, bit) sd |= (__int32(1)<<(bit)) 
#define CLEAR_BIT_32(sd, bit) sd &= ~(__int32(1)<<(bit)) 
#define TOGGLE_BIT_32(sd, bit) sd ^= (__int32(1)<<(bit)) 



 

#define SET_BIT_32(sd, bit, val) if(val != 0) { FLAG_BIT_32(sd, bit); } 
else { CLEAR_BIT_32(sd,bit); } 
 
//28 bit operators 
#define IS_SET_28(sd, bit) (sd & (1<<(bit))) 
#define FLAG_BIT_28(sd, bit) sd |= (1<<(bit)) 
#define CLEAR_BIT_28(sd, bit) sd &= ~(1<<(bit)) 
#define TOGGLE_BIT_28(sd, bit) sd ^= (1<<(bit)) 
#define SET_BIT_28(sd, bit, val) if(val != 0) { FLAG_BIT_28(sd, bit); } 
else { CLEAR_BIT_28(sd,bit); } 
 
//8 bit operators 
#define IS_SET_8(sd, bit) (sd & (__int8(1)<<(bit))) 
#define FLAG_BIT_8(sd, bit) (sd |= (__int8(1)<<(bit))) 
#define CLEAR_BIT_8(sd, bit) (sd &= ~(__int8(1)<<(bit))) 
#define TOGGLE_BIT_8(sd, bit) (sd ^= (__int8(1)<<(bit))) 
#define SET_BIT_8(sd, bit, val) if(val != 0) { FLAG_BIT_8(sd, bit); } 
else { CLEAR_BIT_8(sd,bit); } 
 
//des_data and des_key structures 
//  these are simply unions of the prescribed length 
//  to provide easy access to chunks of data in different  
//  forms, for example, easy access to both all 3 64 bit components 
//  of a 196 bit key can be easily accessed via the int_data field, 
//  while each of the 24 bytes in that 196 bit key can be accessed 
//  individually using the char_data field 
//  this is very useful for a bit-manipulation intensive process 
//    such as DES or 3DES 
 
union des_data32 { 
  unsigned __int32 int_data; 
  unsigned char char_data[4]; 
 
  des_data32() { 
    int_data = 0; 
  } 
}; 
 
union des_data48 { 
  unsigned __int64 int_data : 48; 
  unsigned char char_data[6]; 
 
  des_data48() { 
    int_data = 0; 
  } 
}; 
 
union des_data64 { 
  unsigned __int64 int_data; 
  unsigned char char_data[8]; 
  char string_data[8]; 
 
  des_data64() { 
    int_data = 0; 
  } 
 
  des_data64(__int64 num) { 



 

    int_data = num; 
  } 
}; 
 
union des_data196 { 
  unsigned __int64 int_data[3]; 
  unsigned char char_data[24]; 
 
  des_data196() { 
    int_data[0] = 0; 
    int_data[1] = 0; 
    int_data[2] = 0; 
  } 
}; 
 
union des_key64 { 
  unsigned __int64 int_data; 
  unsigned char char_data[8]; 
 
  des_key64() { 
    int_data = 0; 
  } 
 
  des_key64(__int64 num) { 
    int_data = num; 
  } 
}; 
 
union des_key196 { 
  unsigned __int64 int_data[3]; 
  unsigned char char_data[24]; 
 
  des_key196() { 
    int_data[0] = 0; 
    int_data[1] = 0; 
    int_data[2] = 0; 
  } 
}; 
 
union des_key56 { 
  unsigned __int64 int_data : 56; 
  unsigned char char_data[7]; 
 
  des_key56() { 
    int_data = 0; 
  } 
}; 
 
union des_key48 { 
  unsigned __int64 int_data : 48; 
  unsigned char char_data[6]; 
   
  des_key48() { 
    int_data = 0; 
  } 
}; 
 



 

 
//Tables come from FIPS PUB 46-3 of the US Government 
//THESE TABLES AND VALUES HAVE BEEN TRIPLE CHECKED AND COMPARED TO 
KNOWN WORKING VALUES 
 
//Key Permutations and Rotations 
const unsigned int keyPerm[56] = {57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 
42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 
45, 37, 29, 21, 13, 5, 28, 20, 12, 4}; 
const unsigned int keyShifts[16] = {1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 
2, 2, 2, 1}; 
const unsigned int keyCompression[48] = {14, 17, 11, 24, 1, 5, 3, 28, 
15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 
37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 
36, 29, 32}; 
 
//Data Permutations 
const unsigned int initialPermutation[64] = {58, 50, 42, 34, 26, 18, 
10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 
64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 
43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 
31, 23, 15, 7}; 
const unsigned int finalPermutation[64] = {40, 8, 48, 16, 56, 24, 64, 
32, 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37, 
5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 
11, 51, 19, 59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 
17, 57, 25}; 
const unsigned int eBox[] = {32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 
10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 
22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1}; 
const unsigned int pBox[] = {16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 
26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 
4, 25}; 
 
//S-Boxes 
 
const unsigned __int8 sBox[8][4][16] ={  
  { 
    {14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7}, 
    {0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8}, 
    {4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0}, 
    {15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13} 
  }, 
  { 
    {15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10}, 
    {3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5}, 
    {0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15}, 
    {13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9} 
  }, 
  { 
    {10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8}, 
    {13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1}, 
    {13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7}, 
    {1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12} 
  }, 
  { 



 

    {7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15}, 
    {13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9}, 
    {10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4}, 
    {3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14} 
  }, 
  { 
    {2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9}, 
    {14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6}, 
    {4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14}, 
    {11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3} 
  }, 
  { 
    {12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11}, 
    {10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8}, 
    {9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6}, 
    {4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13} 
  }, 
  { 
    {4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1}, 
    {13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6}, 
    {1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2}, 
    {6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12} 
  }, 
  { 
    {13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7}, 
    {1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2}, 
    {7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8}, 
    {2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11} 
  } 
}; 
 
//This is essentially a finite state machine 
class cDES { 
 
private: 
  int m_mode; 
  int m_chainmode; 
  int m_length; 
  des_data196 IV; 
 
  int doDES(char *data, char** output, des_key64 key); 
  int do3DES(char *data, char** output, des_key196 key); 
 
  //data functions 
  des_data64 processBlock(des_data64 data, des_key56 key); //performs 
work 
  des_data64 IP(des_data64 data); //initial permutation 
  des_data64 FP(des_data64 data); //final permutation 
 
  des_data32 round(des_data32 data, des_key48 key); //1 round 
  des_data48 eBoxPermutation(des_data32 data); //expansion permutation 
  des_data32 sBoxPermutation(des_data48 data); //substitution 
permutation 
  des_data32 pBoxPermutation(des_data32 data); //straight permutation 
 
  //key functions 
  des_key56 pruneParityBits(des_key64 key); 



 

  des_key48 roundKey(des_key56 key, int round); 
 
public: 
 
  cDES(); 
  cDES(int mode); 
 
  void testDES(); 
  void test3DES(); 
 
  inline int encrypt_des(char* data, int len, char** output, des_key64 
key) { 
    m_mode = MODE_EDES; 
    m_length = len; 
    return doDES(data, output, key); 
  } 
 
  inline int decrypt_des(char *data, int len, char** output, des_key64 
key) { 
    m_mode = MODE_DDES; 
    m_length = len; 
    return doDES(data, output, key); 
  } 
 
  inline int encrypt_3des(char* data, int len, char** output, 
des_key196 key) { 
    m_mode = MODE_E3DES; 
    m_length = len; 
    return do3DES(data, output, key); 
  } 
 
  inline int decrypt_3des(char* data, int len, char** output, 
des_key196 key) { 
    m_mode = MODE_D3DES; 
    m_length = len; 
    return do3DES(data, output, key); 
  } 
 
  inline des_data64 getIV() { return (des_data64)IV.int_data[0]; } 
  inline des_data196 get3IV() { return IV; } 
  inline void setIV(des_data64 newIV) { IV.int_data[0] = 
newIV.int_data; } 
  inline void setIV(des_data196 newIV) { IV = newIV; } 
}; 
 
#endif 
 
 
 
 
 
 
 
 
 



 

DES.cpp 
  
//  houses a class that implements DES and 3DES encryption 
//  according to Federal Information Processing Standard 46-3 
//  from the US National Institute of Standards and Technology 
// supported chaining modes: 
//   ECB: electronic code book  
//   CBC: cipher block chaining 
//   CBC Checksum: CBC with a checksum for integrity verification 
 
//cDES is a finite state machine, so all that is required 
//  is to set its modes, then call its main functions 
 
#include "scrypto.h" 
 
//Display a buffer one byte at a time in hexadecimal 
void disp_hex(unsigned char *data, int n ) { 
  int i; 
 
  for (i=0; i<n; i++) { 
    //use printf for its hex printing abilities 
    printf("%02X ", data[i]);  
  } 
  printf("\n"); 
} 
 
//Helper Functions for Printing des_data and des_key types 
void disp_desdata64(des_data64 *data) { 
  disp_hex((unsigned char*)&data->char_data, 8); 
} 
 
void disp_deskey64(des_key64 *data) { 
  disp_hex((unsigned char*)&data->char_data, 8); 
} 
 
void disp_deskey48(des_key48 *data) { 
  disp_hex((unsigned char*)&data->char_data, 6); 
} 
 
cDES::cDES() { 
  m_mode = 0; 
  m_chainmode = CHAINMODE_ECB; 
  m_length = 0; 
} 
 
cDES::cDES(int mode) { 
  m_mode = 0; 
  m_chainmode = mode; 
  m_length = 0; 
} 
 
 
//This function was used to test compliance to 
// FIPS PUB 46-3 using the NIST Document 800-17 
// which has test vectors for a DES encryption unit 
void cDES::testDES() { 



 

  int i,j; 
  des_data64 data; 
  des_key64 key; 
  des_key56 prunedKey; 
  unsigned char work; 
 
  //NIST Document 800-17 : Test Vectors for DES 
  unsigned char test[9][8]= {  
    //NIST Example Round 
    //CONFIRMED: we can do this one 
    {0x10,0x31,0x6E,0x02,0x8C,0x8F,0x3B,0x4A}, //KEY 
    {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //PLAINTEXT 
    {0x82,0xDC,0xBA,0xFB,0xDE,0xAB,0x66,0x02}, //GOAL CIPHERTEXT 
 
    //NIST Variable Plaintext Known Answer Test 
    //CONFIRMED: we can do this one 
    {0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01}, 
    {0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, 
    {0x95,0xF8,0xA5,0xE5,0xDD,0x31,0xD9,0x00}, 
 
    //NIST Variable Key Known Answer Test 
    //CONFIRMED: we can do this one 
    {0x80,0x01,0x01,0x01,0x01,0x01,0x01,0x01}, 
    {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, 
    {0x95,0xA8,0xD7,0x28,0x13,0xDA,0xA9,0x4D} 
  }; 
 
  //fill the data and key 
  for(i=0; i<8; i++) { 
    key.char_data[i] = test[0][i]; 
    data.char_data[i] = test[1][i]; 
  } 
 
  cout << "Key       ="; 
  disp_deskey64(&key); 
  cout << "Plaintext ="; 
  disp_desdata64(&data); 
 
  //reverse key and data byte order b/c the government uses big endian 
computers 
  for(i=0;i<8;i++) { 
    work = 0; 
    for(j=0;j<8; j++) { 
      if(IS_SET_8(data.char_data[i], j)) { 
        work |= (1 << (7-j)); 
      } 
    } 
    data.char_data[i] = work; 
  } 
 
  for(i=0;i<8;i++) { 
    work = 0; 
    for(j=0;j<8; j++) { 
      if(IS_SET_8(key.char_data[i], j)) { 
        work |= (1 << (7-j)); 
      } 
    } 



 

    key.char_data[i] = work; 
  } 
 
  m_mode = MODE_EDES; 
 
  prunedKey = pruneParityBits(key); 
  data = processBlock(data, prunedKey); 
 
  //reverse again for printing 
  for(i=0;i<8;i++) { 
    work = 0; 
    for(j=0;j<8; j++) { 
      if(IS_SET_8(data.char_data[i], j)) { 
        work |= (1 << (7-j)); 
      } 
    } 
    data.char_data[i] = work; 
  } 
 
  cout << "Ciphertext="; 
  disp_desdata64(&data); 
  cout << "Should Be ="; 
  disp_hex(test[2], 8); 
 
} 
 
//Main entry point for 3DES Encryption, 
//  sets up the key and IV, padds the data, adds a checksum 
//  then calls DES three times 
int cDES::do3DES(char *data, char **output, des_key196 key) { 
  char *r1, *r2, *r3, *paddedPT; 
  des_data196 tempIV; 
  des_key64 k1, k2, k3; 
  des_data64 i1, i2, i3; 
  char pad; 
 
  r1 = r2 = r3 = paddedPT = NULL; 
 
  //Pad the data even if we arn't in checksum mode  
  //  it lets us know how much we had to pad it 
  if(m_mode == MODE_E3DES) { 
    //Postpend the identification tag and the padding 
 
    //We want the data to be a multiple of 8 bytes long 
    pad = 8 - m_length%8; 
    paddedPT = new char[m_length + pad + 8]; //our final block is 8 
bytes 
 
    if(!paddedPT) 
      throw cError("cDES::do3DES() - Insufficient Memory for padding"); 
 
    //clear and copy the data into the new buffer 
    memset(paddedPT, 0, m_length+pad+8); 
    memcpy(paddedPT, data, m_length); 
 
    m_length = m_length+pad+8; 
 



 

    //Pad the plaintext with the checksum tag 
    //The tag is of this format "SCRYPTOX" 
    //  where X is how many bytes of data were added  
    //  to the original data, this way the receiver 
    //  upon verifying that SCRYPTO is intact,  
    //  can find the true length of the data transmitted 
    //its faster and more accurate to unroll the loop 
    paddedPT[m_length-1] = pad; 
    paddedPT[m_length-2] = 'O'; 
    paddedPT[m_length-3] = 'T'; 
    paddedPT[m_length-4] = 'P'; 
    paddedPT[m_length-5] = 'Y'; 
    paddedPT[m_length-6] = 'R'; 
    paddedPT[m_length-7] = 'C'; 
    paddedPT[m_length-8] = 'S'; 
  } 
  else 
    paddedPT = data; 
 
  tempIV = IV; //backup the IV 
  if(m_mode == MODE_E3DES) { 
    k1.int_data = key.int_data[0]; 
    k2.int_data = key.int_data[1]; 
    k3.int_data = key.int_data[2]; 
    i1 = IV.int_data[0]; 
    i2 = IV.int_data[1]; 
    i3 = IV.int_data[2]; 
  } 
  else if(m_mode == MODE_D3DES) { 
    k1.int_data = key.int_data[2]; 
    k2.int_data = key.int_data[1]; 
    k3.int_data = key.int_data[0]; 
    i1 = IV.int_data[2]; 
    i2 = IV.int_data[1]; 
    i3 = IV.int_data[0]; 
  } 
 
  //3DES = DES(DES(DES(PT, k1), k2), k3) 
  IV.int_data[0] = i1.int_data; 
  doDES(paddedPT, &r1, k1); 
  IV.int_data[0] = i2.int_data; 
  doDES(r1, &r2, k2); 
  IV.int_data[0] = i3.int_data; 
  doDES(r2, &r3, k3);  
 
  IV = tempIV; //reset the IV 
 
  //Confirm and strip the checksum pad 
  if(m_mode == MODE_D3DES) { 
    pad = r3[m_length-1]; //the last byte is the pad amount 
    if(strncmp(r3+m_length-8, "SCRYPTO", 7) != 0) 
      throw cError("cDES::do3DES() - Checksum is incorrect; Transfer 
failed."); 
 
    m_length = m_length - pad - 8; 
  } 
 



 

  char *final = new char[m_length]; 
 
  if(!final) 
    throw cError("cDES::do3DES() - Insufficient Memory for 3DES"); 
 
  memcpy(final, r3, m_length); 
  *output = final; //pass the result back to the caller 
 
  //free up our allocated memory 
  delete r3; 
  delete r2; 
  delete r1; 
  if(m_mode == MODE_E3DES) 
    delete paddedPT; 
  r3 = r2 = r1 = paddedPT = NULL; //for safety 
 
  //return the length of *output to the caller 
  return m_length; 
} 
 
int cDES::doDES(char *data, char **output, des_key64 key) { 
  des_data64 *blocks; 
  des_data64 work, work2, total; 
  des_key56 prunedKey; 
  unsigned int i,k; 
  int j; 
  char *result, *paddedPT; 
  char pad; 
 
  unsigned int numBlocks; 
 
  //Postpend the identification tag and the padding 
  //  this is more or less identical to the 3DES version 
  if(m_mode == MODE_EDES) { 
 
    pad = 8-m_length % 8; 
    paddedPT = new char[m_length + pad + 8]; //our final block is 8 
bytes 
 
    if(!paddedPT) 
      throw cError("cDES::doDES() - Insufficient Memory for padding"); 
 
    //clear and fill the buffer 
    memset(paddedPT, 0, m_length+pad+8); 
    memcpy(paddedPT, data, m_length); 
 
    m_length = m_length+pad+8; 
 
    //Pad the plaintext with the checksum tag 
    //its faster and more accurate to unroll the loop 
    paddedPT[m_length-1] = pad; 
    paddedPT[m_length-2] = 'O'; 
    paddedPT[m_length-3] = 'T'; 
    paddedPT[m_length-4] = 'P'; 
    paddedPT[m_length-5] = 'Y'; 
    paddedPT[m_length-6] = 'R'; 
    paddedPT[m_length-7] = 'C'; 



 

    paddedPT[m_length-8] = 'S'; 
  } 
  else 
    paddedPT = data; 
 
  numBlocks = m_length/8; //we padded it so this should divide evenly 
  blocks = new des_data64[numBlocks]; 
 
  if(!blocks) 
    throw cError("cDES::doDES() - Insufficient Memory for DES"); 
 
  memset(blocks, 0, sizeof(des_data64)*numBlocks); 
 
  prunedKey = pruneParityBits(key); 
 
  //set the initialization vector 
  work.int_data = IV.int_data[0]; 
 
  //for every block 
  for(i=0, j=0; i<numBlocks; i++) { 
    //copy each block into the block structure 
    for(k=0; j<m_length && k<8; k++, j++) { 
      blocks[i].char_data[k] = paddedPT[j]; 
    } 
 
    //now perform the chain mode processing 
    if(m_mode == MODE_EDES || m_mode == MODE_E3DES) { 
      //for ECB, just process the block 
      if(m_chainmode == CHAINMODE_ECB) { 
        blocks[i] = processBlock(blocks[i], prunedKey); 
      } 
      //for CBC, each PT block is XOR'd with the previous CT block 
before encryption 
      else if(m_chainmode == CHAINMODE_CBC) { 
        blocks[i].int_data ^= work.int_data; //xor with previous (CBC) 
        blocks[i] = processBlock(blocks[i], prunedKey); 
        work.int_data = blocks[i].int_data; 
      } 
      //for CBC Checksum, each PT block is XOR'd with the previous CT 
block 
      // and the final block is XORed with a running XOR of all the PT 
blocks 
      else if(m_chainmode == CHAINMODE_CHECKSUMCBC) {  
        if(i==0) //keep a running total XOR 
          total.int_data = blocks[i].int_data; 
        else if(i<numBlocks-1) 
          total.int_data ^= blocks[i].int_data; 
        else if(i==numBlocks-1) 
          blocks[i].int_data ^= total.int_data; 
 
        blocks[i].int_data ^= work.int_data; //xor with previous (CBC) 
 
        blocks[i] = processBlock(blocks[i], prunedKey); 
        work.int_data = blocks[i].int_data; 
      } 
    } 
    else if (m_mode == MODE_DDES || m_mode == MODE_D3DES) { 



 

      //for ECB just process the block 
      if(m_chainmode == CHAINMODE_ECB) { 
        blocks[i] = processBlock(blocks[i], prunedKey); 
      } 
      //for CBC each block is decrypted then XOR'd with the previous CT 
block 
      else if(m_chainmode == CHAINMODE_CBC) { 
        work2.int_data = blocks[i].int_data; //save CT for next block 
        blocks[i] = processBlock(blocks[i], prunedKey); 
        blocks[i].int_data ^= work.int_data; //XOR with previous CT 
block or IV 
        work.int_data = work2.int_data; 
      } 
      else if(m_chainmode == CHAINMODE_CHECKSUMCBC) { 
        work2.int_data = blocks[i].int_data; 
        blocks[i] = processBlock(blocks[i], prunedKey); 
        blocks[i].int_data ^= work.int_data; 
        work.int_data = work2.int_data; 
 
        if(i==0) //keep a running total XOR 
          total.int_data = blocks[i].int_data; 
        else if(i<numBlocks-1) 
          total.int_data ^= blocks[i].int_data; 
        else if(i==numBlocks-1) 
          blocks[i].int_data ^= total.int_data; 
 
      } 
    } 
  } 
 
  //Check and strip the checksum pad 
  if(m_mode == MODE_DDES) { 
    pad = blocks[numBlocks-1].char_data[7]; 
    if(strncmp((char*)blocks[numBlocks-1].char_data, "SCRYPTO", 7) != 
0) 
      throw cError("cDES::doDES() - Checksum is incorrect; Transfer 
failed."); 
    m_length = m_length - pad - 8; 
  } 
 
  //Compose Result 
  result = new char[m_length]; 
  if(!result) 
    throw cError("cDES::doDES() - Insufficient Memory for DES"); 
  memset(result, 0, m_length); 
 
  //could do a memset, but this is more clear 
  for(i=0,j=0; i<numBlocks; i++) { 
    for(k=0;k<8 && j<m_length;k++,j++){ 
      result[j] = blocks[i].char_data[k]; 
    } 
  } 
 
  //return the result in *output 
  *output = result; 
 
  //free our memory 



 

  if(m_mode == MODE_EDES) 
    delete paddedPT; 
  delete blocks; 
 
  //return the length of *output to the caller 
  return m_length; 
} 
 
//This performs the key permutation and strips out parity bits 
des_key56 cDES::pruneParityBits(des_key64 key) { 
  int i; 
  des_key56 pKey; 
 
  for(i=0; i<56; i++) { 
    SET_BIT_56(pKey.int_data, i, IS_SET_64(key.int_data, (keyPerm[i]-
1))); 
  } 
 
  return pKey; 
} 
 
//Performs the initial permutation 
des_data64 cDES::IP(des_data64 data) { 
  int i; 
  des_data64 result; 
 
  for(i=0; i<64; i++) { 
    SET_BIT_64(result.int_data, i, IS_SET_64(data.int_data, 
(initialPermutation[i]-1))); 
  } 
 
  return result; 
} 
 
//Performs the final permutation (inverse of IP) 
des_data64 cDES::FP(des_data64 data) { 
  int i; 
  des_data64 result; 
 
  for(i=0; i<64; i++) { 
    SET_BIT_64(result.int_data, (initialPermutation[i]-1), 
IS_SET_64(data.int_data, i)); 
  } 
 
  return result; 
} 
 
//Main processing block function for DES 
des_data64 cDES::processBlock(des_data64 data, des_key56 key) { 
  int i; 
  des_data32 li, lip;  
  des_data32 ri, rip; 
  des_key48 ki; 
  des_data64 result; 
 
  data = IP(data); //Perform Initial Permutation 
 



 

  //split the 64 bit block into two 32 bit segments 
  // left : bits 0-31 right : bits 32 - 63 
  lip.int_data = __int32(data.int_data & 
((__int64)(0x00000000FFFFFFFFLL))); 
  rip.int_data = __int32((data.int_data & 
((__int64)(0xFFFFFFFF00000000LL))) >> 32); 
 
  //Perform Round Work 
  //For rounds i from 0 to 15 
  for(i=0; i<16; i++, lip = li, rip = ri) { 
    //Get the key for this round 
    ki = roundKey(key, i);  
 
    //Li = Ri-1 
    li = rip; 
    //Ri = Li-1 XOR round(Ri-1, Ki) 
    ri.int_data = lip.int_data ^ round(rip, ki).int_data;  
 
    if(DEBUG) 
      cout << "Round #" << i << " Left: " << li.int_data << " Right: " 
<< ri.int_data << endl; 
  } 
 
  //Rejoin the two chunks, right left rather than left right 
  result.int_data = ri.int_data; 
  result.int_data |= (((__int64)(li.int_data)) << 32); 
 
  result = FP(result); //Perform Final Permutation 
 
  return result; 
} 
 
//returns the permuted 48 bit key based on the original 56 bit key 
des_key48 cDES::roundKey(des_key56 key, int round) { 
  des_key48 result; 
  des_key56 rotatedKey; 
  int shift, i; 
 
  //if decrypting, deliver keys in opposite order 
  if(m_mode == MODE_DDES || m_mode == MODE_D3DES) 
    round = 15-round; 
 
  for(i=0, shift=0; i<=round; i++) { 
    shift += keyShifts[i]; 
  } 
 
  //don't split into two 28 bit halves, not necessary 
  //circularly rotate each set of 28 bits in the 56 bit key by the 
shift 
  //intense bit manipulation here: basically shifts everything around  
 
  rotatedKey.int_data = key.int_data; 
  for(i=0; i<shift; i++) { 
    //Circular Left Shift 
    //rotatedKey.int_data = ((rotatedKey.int_data << 1) & 
((__int64)(0xFFFFFFEFFFFFFELLU))) | ((rotatedKey.int_data >> 27) & 
((__int64)(0x00000010000001LLU))); 



 

 
    //Circular Right Shift - the government says left but means right 
    rotatedKey.int_data = ((rotatedKey.int_data >> 1) & 
((__int64)(0x7FFFFFF7FFFFFFLLU))) | ((rotatedKey.int_data << 27) & 
((__int64)(0x80000008000000LLU))); 
  } 
 
  if(DEBUG) { 
    cout << "Original 56bit Key: " << key.int_data << endl; 
    cout << "Rotated 56bit Key: " << rotatedKey.int_data << endl; 
  } 
 
  //now compress the 56 bit key to the 48 using the compression table 
  for(i=0; i<48; i++) { 
    SET_BIT_48(result.int_data, i, IS_SET_56(rotatedKey.int_data, 
(keyCompression[i]-1))); 
  } 
 
  if(DEBUG) 
    cout << "Result Compressed Key: " << result.int_data << endl; 
 
  return result; 
} 
 
//expand 32 bit data to 48 bits according to the expansion box 
des_data48 cDES::eBoxPermutation(des_data32 data) { 
  int i; 
  des_data48 result; 
 
  for(i=0; i<48; i++) { 
    SET_BIT_48(result.int_data, i, IS_SET_32(data.int_data, (eBox[i]-
1))); 
  } 
 
  return result; 
} 
 
 
//SBox bit assignments 
//S1: 1-6 S2: 7-12 S3: 13-18 S4: 19-24 S5: 25-30 S6: 31-36 S7: 37-42 
S8: 43-48 
 
//Perform the SBox substitutions 
des_data32 cDES::sBoxPermutation(des_data48 data) { 
  int row, col; 
  des_data32 result; 
  unsigned __int32 sBoxInputs[8]; 
  unsigned __int64 sval; 
  int i; 
 
  //this basically chops the 48 bit input into 8 6-bit chunks 
  for(i=0; i<8; i++) { 
    sBoxInputs[i] = __int32 (  ( (((unsigned __int64)(0x3FLLU)) << 
(i*6)) & data.int_data ) >> (i*6) ); 
  } 
 
  for(i=0; i<8; i++) { 



 

    //Little Endian Byte Order 
    //row = (sBoxInputs[i] & 0x01) | ((sBoxInputs[i] & 0x20) >> 4); 
//bits 1 and 6 are the row 
    //col = (sBoxInputs[i] & 0x1E) >> 1; //bits 2-5 are the column 
 
    //Big Endian Byte Order 
    //The SBoxes were designed by the government so flip byte order 
    row = (sBoxInputs[i] & 0x01) << 1 | ((sBoxInputs[i] & 0x20) >> 5); 
//bits 1 and 6 are the row 
    col = ((sBoxInputs[i] & 0x10) >> 4) | ((sBoxInputs[i] & 0x08) >> 2) 
| ((sBoxInputs[i] & 0x04)) | ((sBoxInputs[i] & 0x02) << 2);  
 
    //also flip the value of the sbox, because the table is listed in 
big endian byte order 
    sval = (__int64)(sBox[i][row][col]); 
    sval = ((sval & 0x01) << 3) | ((sval & 0x02) << 1) | ((sval & 0x04) 
>> 1) | ((sval & 0x08) >> 3); 
 
    result.int_data |= (sval << (4*i)); //pack the sbox values in every 
4 bits 
  } 
 
  return result; 
} 
 
//Perform the pBox permutation 
des_data32 cDES::pBoxPermutation(des_data32 data) { 
  des_data32 result; 
  int i; 
 
  for(i=0; i<32; i++) { 
    SET_BIT_32(result.int_data, i, IS_SET_32(data.int_data, (pBox[i]-
1))); 
  } 
 
  return result; 
} 
 
//round function, all the round work goes on in here 
des_data32 cDES::round(des_data32 data, des_key48 key) { 
  //we are given the 32 bit data from the round and the 48 bit round 
key 
  des_data48 expandedData; 
  des_data48 sBoxInput; 
  des_data32 result; 
 
  //Perform the Expansion Permutation 
  expandedData = eBoxPermutation(data); 
 
  //XOR Expansion Permutation with the Round Key 
  sBoxInput.int_data = key.int_data ^ expandedData.int_data; 
 
  //Perform the S-Box Substitution 
  result = sBoxPermutation(sBoxInput); 
 
  //Perform the P-Box Permutation 
  result = pBoxPermutation(result); 



 

 
  //Return the result 
  return result; 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

diffie.h 
 
#ifndef _DIFFIE_H_ 
#define _DIFFIE_H_ 
 
//  Function prototypes for Diffie Hellman Key Negotiation 
int diffieAlice(cRawSocket *socket); 
int diffieBob(cRawSocket *socket); 
 
#endif 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

diffie.cpp 
 
//  houses an implementation of Diffie Hellman Key Negotiation 
//  tailored to work with cRawSocket 
 
//Diffie Hellman Key Negotiation 
// Alice            Bob 
// =======          ======= 
// Pick xa          Pick xb 
// Pick n           Pick g 
// Send n           Send g 
// Recv g           Recv n 
// Calc ya          Calc yb 
// Send ya          Send yb 
// Recv yb          Recv ya 
// Calc k           Calc k' 
//          k = k' 
 
//since the exponents in calculating ya and yb will pretty much  
// overflow a 64 bit int, even a double: use this property of modular 
// division to keep numbers nice and small 
// to calculate ya = pow(g, xa) % n :  
//for(int i=0, ya=1; i<xa; i++) { 
//  ya *= g; 
//  ya = ya % n; 
//} 
 
#include "scrypto.h" 
 
int diffieAlice(cRawSocket *socket) { 
  unsigned int i, j;  
  int length; 
  unsigned int xa, ya, yb; 
  unsigned int n, g, k; 
  char *input; 
 
  //Seed the RNG 
  srand(getpid()*time(NULL)); 
 
  //Pick xa 
  //To keep variables from overflowing, limit xa's size 
  //real implementations should use high-precision variables 
  xa = rand() % 255 + 2; //xa > 1 b/c its weak as 1 or 0 
  //Pick n 
  n = rand() % 255 + 2; //n > 1 because 0 div by zero and 1 is weak 
(mod n)  
 
  sleep(1); 
 
  //Send n 
  socket->Send((char*)&n, 4); 
 
  //Get g 
  i=0; 
  length = 4; 
  while(i<4) { 
    if(!socket->Recv(&input, &length)) 



 

      break; 
 
    for(j=0; j<length; j++) { 
      ((char*)&g)[i] = input[j]; 
      i++; 
    } 
    length = 3-i; 
    delete input; 
  } 
 
  //Calculate ya 
  //ya = g^xa mod n; 
  for(i=0, ya=1; i<xa; i++) { 
    ya *= g; 
    ya = ya % n; 
  } 
 
  sleep(1); 
  //Send ya 
  socket->Send((char*)&ya, 4); 
 
  //Get yb 
  i=0; 
  length = 4; 
  while(i < 4) { 
    if(!socket->Recv(&input, &length)) 
      break; 
 
    for(j=0; j<length; j++) { 
      ((char*)&yb)[i] = input[j]; 
      i++; 
    } 
    length = 3-i; 
    delete input; 
  } 
 
  //Calculate k 
  //k=yb ^ xa mod n 
  for(i=0,k=1; i<xa; i++) { 
    k *= yb; 
    k = k % n; 
  } 
 
  if(DEBUG) 
    cout << "DiffieAlice xa:" << xa << " g:" << g << " n:" << n << " 
ya:" << ya << " yb:" << yb << " k:" << k << endl; 
 
  return k; 
} 
 
int diffieBob(cRawSocket *socket) { 
  unsigned int i, j; 
  int length; 
  char *input; 
  unsigned int xb, yb, ya; 
  unsigned int n, g, k; 
 



 

  //Seed the RNG 
  srand(getpid()*time(NULL)); 
 
  //Pick xb 
  //To keep variables from overflowing, limit xa's size 
  //real implementations should use high-precision variables 
  xb = rand()%255+2; 
  //Pick g 
  g = rand()%255+2; 
 
  //Get n 
  i=0; 
  length = 4; 
  while(i < 4) { 
    if(!socket->Recv(&input, &length)) 
      break; 
 
    for(j=0; j<length; j++) { 
      ((char*)&n)[i] = input[j]; 
      i++; 
    } 
    length = 3-i; 
    delete input; 
  } 
 
  sleep(1); 
 
  //Send g 
  socket->Send((char*)&g, 4); 
 
  //Get ya 
  i=0; 
  length = 4; 
  while(i < 4) { 
    if(!socket->Recv(&input, &length)) 
      break; 
 
    for(j=0; j<length; j++) { 
      ((char*)&ya)[i] = input[j]; 
      i++; 
    } 
    length = 3-i; 
    delete input; 
  } 
 
  //Calculate yb 
  for(i=0, yb=1; i<xb; i++) { 
    yb *= g; 
    yb = yb % n; 
  } 
 
  sleep(1); 
  //Send yb 
  socket->Send((char*)&yb, 4); 
 
  //Calculate k 
  // k = ya ^ xb mod n 



 

  for(i=0, k=1; i<xb; i++) { 
    k *= ya; 
    k = k % n; 
  } 
 
  if(DEBUG) 
    cout << "DiffieBob xb:" << xb << " g:" << g  << " n:" << n << " 
yb:" << yb << " ya:" << ya << " k:" << k << endl; 
 
  return k; 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

rawsocket.h 
 
#ifndef _RAWSOCKET_H_ 
#define _RAWSOCKET_H_ 
 
//  a class definition a for raw linux socket 
//  used to send data covertly through the IPID 
//  using TCP Header Encoding 
 
// Credit for the idea of TCP Header Encoding is attributed to 
// Craig H. Rowland - Circa 1996 (crowland@psionic.com) 
 
#define MAX_RECEIVE 4096 
#define MAX_SEND 4096 
 
struct packet { 
  iphdr ip; //20bytes 
  tcphdr tcp; //20bytes 
  char data[MAX_SEND]; 
}; 
 
//used to compute the TCP checksum 
//  take the checksum of the source address,  
//  dest_address, placeholder, protocol, tcp_length, the TCP packet 
itself, 
//  and the data being sent 
struct tcphdr_checksum { 
  unsigned int source_address; 
  unsigned int dest_address; 
  unsigned char placeholder; 
  unsigned char protocol; 
  unsigned short tcp_length; 
  struct tcphdr tcp; 
  char data[MAX_SEND]; 
}; 
 
class cRawSocket { 
private: 
  hostent* m_lpHostEntry; 
 
  int m_pInSock, m_pOutSock; //holds the SOCKET ids for 
sending/receiving 
  struct sockaddr_in m_inAddr; //input socket data structure 
  struct sockaddr_in m_outAddr; //output socket data structure 
   
  int m_retVal; 
  bool m_isServer; 
  int m_iPort; 
 
public:  
  cRawSocket(bool server); 
  ~cRawSocket(); 
 
  //these two neither bind() nor connect() 
  // they only set our structures up properly 
  bool Bind(int port); 



 

  bool Connect(string address, int port); 
   
  bool Send(char* data, int len); 
  bool Send(char* data, int len, unsigned short ipid); 
 
  bool Recv(char **output, int *len); 
  bool Recv(char **output, int *len, unsigned short *ipid); 
 
  bool CheckError(); 
  inline bool isServer() { return m_isServer; } 
}; 
 
#endif 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

rawsocket.cpp 
 
// Houses the definition for the class cRawSocket, which outlines ways 
the Unix Sockets 
//  library can be used to send data through a covert channel (in this 
implementation, the ipid) 
//all of the API calls here are standard Unix (Berkeley) Sockets 
functions, nothing special 
 
#include "scrypto.h" 
 
//This function computes a 32 bit checksum, 
//  a standard library function originally implemented  
//  in the ICMP_ECHO code of Unix Sockets. It is released 
//  under a General Public License, and is reproduced 
//  here with copyright notice for accurate computations,  
//  since calculating checksums falls beyond the scope of this paper 
 
/* Copyright (c)1987 Regents of the University of California. 
* All rights reserved. 
* 
* Redistribution and use in source and binary forms are permitted 
* provided that the above copyright notice and this paragraph are 
* dupliated in all such forms and that any documentation, advertising  
* materials, and other materials related to such distribution and use 
* acknowledge that the software was developed by the University of 
* California, Berkeley. The name of the University may not be used 
* to endorse or promote products derived from this software without 
* specific prior written permission. THIS SOFTWARE IS PROVIDED ``AS 
* IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,  
* WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHATIBILITY AND  
* FITNESS FOR A PARTICULAR PURPOSE 
*/ 
 
unsigned short checksum(unsigned short *ptr, int nbytes) 
{ 
  register long   sum;    /* assumes long == 32 bits */ 
  u_short     oddbyte; 
  register u_short  answer;   /* assumes u_short == 16 bits */ 
 
  /* 
  * Our algorithm is simple, using a 32-bit accumulator (sum), 
  * we add sequential 16-bit words to it, and at the end, fold back 
  * all the carry bits from the top 16 bits into the lower 16 bits. 
  */ 
 
  sum = 0; 
  while (nbytes > 1)  { 
    sum += *ptr++; 
    nbytes -= 2; 
  } 
 
  /* mop up an odd byte, if necessary */ 
  if (nbytes == 1) { 
    oddbyte = 0;    /* make sure top half is zero */ 
    *((u_char *) &oddbyte) = *(u_char *)ptr;   /* one byte only */ 



 

    sum += oddbyte; 
  } 
 
  /* 
  * Add back carry outs from top 16 bits to low 16 bits. 
  */ 
 
  sum  = (sum >> 16) + (sum & 0xffff);  /* add high-16 to low-16 */ 
  sum += (sum >> 16);     /* add carry */ 
  answer = ~sum;    /* ones-complement, then truncate to 16 bits */ 
  return(answer); 
} /* end checksum() */ 
 
cRawSocket::cRawSocket(bool server) { 
  m_lpHostEntry = NULL; 
  m_pInSock = m_pOutSock = 0; 
  m_retVal = 0; 
  m_isServer = server; 
  m_iPort = 0; 
 
  //clear the connection info buffers 
  memset(&m_inAddr, 0, sizeof(struct sockaddr_in)); 
  memset(&m_outAddr, 0, sizeof(struct sockaddr_in)); 
 
  m_inAddr.sin_family = AF_INET; 
  m_inAddr.sin_addr.s_addr = INADDR_ANY; 
  m_inAddr.sin_port = 0; 
 
  m_outAddr.sin_family = AF_INET; 
  m_outAddr.sin_addr.s_addr = INADDR_ANY; 
  m_outAddr.sin_port = 0; 
} 
 
cRawSocket::~cRawSocket() { 
  //the sockets are closed in Send and Recv, nothing really to do here 
} 
 
//don't actually call bind(), just setup the structure information 
bool cRawSocket::Bind(int port) { 
 
  if(!isServer()) 
    return false; 
 
  m_iPort = port; 
 
  m_inAddr.sin_port = htons(port); 
  m_outAddr.sin_port = htons(port+1); 
 
  return true; 
} 
 
bool cRawSocket::Connect(string address, int port) { 
  unsigned int ip; 
 
  if(address.length() <= 0 || port <= 0 || port > 65536) 
    return false; 
 



 

  m_iPort = port; 
  m_lpHostEntry = gethostbyname(address.c_str()); 
 
  if (!m_lpHostEntry) { 
    ip = inet_addr(address.c_str()); 
  } 
  if(!m_lpHostEntry && ip == INADDR_NONE) { 
    return false; 
  } 
 
  m_outAddr.sin_family = AF_INET; 
  if(m_lpHostEntry) 
    memcpy(&m_outAddr.sin_addr, m_lpHostEntry->h_addr, m_lpHostEntry-
>h_length); 
  else 
    m_outAddr.sin_addr.s_addr = ip; 
 
  m_inAddr.sin_family = AF_INET; 
  m_inAddr.sin_addr.s_addr = m_outAddr.sin_addr.s_addr; 
 
  if(m_isServer) { 
    m_inAddr.sin_port = htons(m_iPort); 
    m_outAddr.sin_port = htons(m_iPort+1); 
  } 
  else { 
    m_inAddr.sin_port = htons(m_iPort+1); 
    m_outAddr.sin_port = htons(m_iPort); 
  } 
 
  return true; 
} 
 
 
bool cRawSocket::Send(char *data, int len) {  
  return Send(data, len, 0); 
} 
 
//return false if ok, throw cError on error 
bool cRawSocket::CheckError() { 
 
  if(m_retVal < 0) //socket functions return <0 on error 
    throw cError("cRawSocket: Connection Error"); 
 
  return false; 
} 
 
//we name this Recv vs. recv to not conflict with sockets library 
bool cRawSocket::Recv(char **output, int *len) { 
  unsigned short ipid = 0; 
  return Recv(output, len, &ipid); 
} 
 
bool cRawSocket::Send(char *data, int len, unsigned short ipid) { 
  packet send; 
 
  //Fill the IP Header, most of these values are standard for IP 
  send.ip.ihl = 5; 



 

  send.ip.version = 4; 
  send.ip.tos = 0; 
  send.ip.tot_len = htons(40); // ipheader: 20 + tcpheader: 20  
 
  send.ip.id = htons(ipid); //encode the ipid here (htons switches the 
byte order for ANSI compliance 
 
  send.ip.frag_off = 0; 
  send.ip.ttl = 128; //arbitrary time to live 
  send.ip.protocol = IPPROTO_TCP; 
  send.ip.check = 0; 
  send.ip.saddr = 0; //this doesn't matter because raw sockets are 
connectionless 
  send.ip.daddr = m_outAddr.sin_addr.s_addr; 
 
  //now make perform the checksum of the ipheader 
  send.ip.check = checksum ((unsigned short *)&send.ip, 20); 
 
  //Now fill the TCP Header 
 
  if(m_isServer) { 
    send.tcp.source = 0; 
    send.tcp.dest = htons(m_iPort+1); 
  } 
  else { 
    send.tcp.dest = htons(m_iPort); 
    send.tcp.source = 0; 
  } 
 
  //we do this for a reason: an ipid of zero is automatically replaced 
  // by the linux kernel with some random value, so, we can't send ipid 
0 
  // if both bytes happen to be zero, set the sequence number, 
  // which is unused in raw sockets, to 1234 if ipid == 0 
  // the recv function will just have to check for this 
  if(ipid == 0) 
    send.tcp.seq = 1234; 
  else 
    send.tcp.seq = 1; //arbitrary 
 
  send.tcp.ack_seq = 0; 
  send.tcp.res1 = 0; 
  send.tcp.doff = 5; 
  send.tcp.fin = 0; 
  //set the SYN flag for easy identification,  
  //  and so routers don't auto-filter the packet 
  send.tcp.syn = 1;  
  send.tcp.rst = 0; 
  send.tcp.psh = 0; 
  send.tcp.ack = 0; 
  send.tcp.urg = 0; 
  send.tcp.cwr = 0;  
  send.tcp.ece = 0; 
  send.tcp.window = htons(512); 
  send.tcp.check = 0; 
  send.tcp.urg_ptr = 0; 
 



 

  //Now compute the TCP Header Checksum 
  tcphdr_checksum tcpck; 
  tcpck.source_address = send.ip.saddr; 
  tcpck.dest_address = send.ip.daddr; 
  tcpck.placeholder = 0; 
  tcpck.protocol = IPPROTO_TCP; 
  tcpck.tcp_length = htons(20+len); //tcphdr + len 
 
  memcpy((char*)&tcpck.tcp, (char*)&send.tcp, 20); 
  memcpy(tcpck.data, data, len); //include data in checksum 
  send.tcp.check = checksum((unsigned short *)&tcpck, 32+len); 
 
  //header is setup, now copy data, then send 
  memcpy(send.data, data, len); 
 
  //open a raw socket once per packet so the kernel doesn't get 
confused 
  m_pOutSock = socket(AF_INET, SOCK_RAW, IPPROTO_RAW); 
  m_retVal = sendto(m_pOutSock, (char*)&send, 40+len, 0, 
(sockaddr*)&m_outAddr, sizeof(struct sockaddr_in)); 
  close(m_pOutSock); 
 
  if(CheckError()) 
    return false; 
 
  //for debugging purposes 
  if(DEBUG) 
    cout << "Send: Size:" << m_retVal << " IPID: " << int(ipid) << 
endl; 
 
  return true; 
} 
 
bool cRawSocket::Recv(char **data, int *len, unsigned short *ipid) { 
  int fromlen = sizeof(struct sockaddr_in); 
  char recbuf[MAX_RECEIVE]; 
  packet *recv; // = new packet; 
 
  recv = (packet*)recbuf; 
 
  //Blocking Input: wait for a suitable packet 
  while(1) { 
    memset(recbuf, 0, MAX_RECEIVE); 
 
    m_pInSock = socket(AF_INET, SOCK_RAW, IPPROTO_TCP); 
    if(*len > 0) 
      m_retVal = recvfrom(m_pInSock,recbuf,*len+40,0,(struct 
sockaddr*)&m_inAddr, (socklen_t*)&fromlen); 
    else 
      m_retVal = recvfrom(m_pInSock,recbuf,MAX_RECEIVE,0,(struct 
sockaddr*)&m_inAddr, (socklen_t*)&fromlen); 
    close(m_pInSock); 
 
    if(CheckError()) 
      return false; 
 
    if(recv->tcp.syn == 1) {//process the packet if its ours 



 

      if(m_isServer && ntohs(recv->tcp.dest) == m_iPort)  
        break; 
      if(!m_isServer && ntohs(recv->tcp.dest) == m_iPort+1) 
        break; 
    } 
  } 
 
  if(m_retVal < 40 && m_retVal > 0) 
    throw cError("cRawSocket::Recv - something's wrong, <40 bytes of 
data, not enough for a packet header"); 
 
  //extract the IPID  
  if(recv->tcp.seq == 1234) 
    *ipid = 0; 
  else 
    *ipid = ntohs(recv->ip.id); 
 
  //for debugging purposes 
  if(DEBUG) 
    cout << "Recv: Size:" << m_retVal << " IPID:" << *ipid << endl; 
 
  //Return the received data, this is why we have a double pointer 
  *data = new char[m_retVal]; 
  *len = m_retVal-40; 
  memcpy(*data, recv->data, m_retVal-40); 
 
  return true; 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
error.h 
 
#ifndef _ERROR_H_ 
#define _ERROR_H_ 
 
//  class definition for a generic error handling class 
 
class cError { 
private: 
  string description; 
 
public: 
  cError(string desc); 
  cError(); 
 
  void print(); 
}; 
 
#endif 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

error.cpp 
 
//definition for a generic error handling class 
 
#include "scrypto.h" 
 
cError::cError(string desc) { 
  description = desc; 
} 
 
cError::cError() { 
  description = "Unspecified Error"; 
} 
 
void cError::print() { 
  cout << endl; 
  cout << "Exception Caught: " << description; 
  cout << endl << "Aborting..." << endl; 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

sendlog.txt – output of the program in send mode sending file: send.txt 
 
[root@atrius.ath.cx]# ./scrypto 
Scrypto Protocol Tester by Russell Ryan : Completed January 2005 
Function as a sender or receiver? (S/R):s 
Enter address to connect to:localhost 
Enter port:4000 
Enter filename to send:send.txt 
Begin negotiating 196-bit key... 
Begin computing the initialization vector... 
Sending 416 bytes:... 
25%...50%...75%...100% Done. 
File transfer complete... Quitting... 
[root@atrius.ath.cx]# 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

send.txt – file sent in sendlog.txt 
 
BEGIN 
This is a test of the SCRYPTO Example Protocol 
Implementation included with Russell Ryan's 
International Baccalaureate Extended Essay. 
 
If you are reading this right now, then the transfer worked. 
The following list of numbers is the first 5 terms  
of an arithmetic series with constant interval 5,  
starting at 1. This is an easy method of verification: 
1 6 11 16 21 
 
This is the last line of data. 
EOF 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

receivelog.txt – output of the program in receive mode saving data as receive.txt 
 
[root@atrius.ath.cx]# ./scrypto 
Scrypto Protocol Tester by Russell Ryan : Completed January 2005 
Function as a sender or receiver? (S/R):r 
Enter a port to listen on:4000 
Connected... setting up transfer. 
Negotiating 196-bit key... 
Begin Computing Initialization Vector... 
Receiving 416 bytes:... 
25%...50%...75%...100% Done. 
Enter filename for received data:receive.txt 
Contents of receive.txt: 
This is a test of the SCRYPTO Example Protocol 
Implementation included with Russell Ryan's 
International Baccalaureate Extended Essay. 
 
If you are reading this right now, then the transfer worked. 
The following list of numbers is the first 5 terms 
of an arithmetic series with constant interval 5, 
starting at 1. This is an easy method of verification: 
1 6 11 16 21 
 
This is the last line of data. 
EOF 
File transfer complete... Quitting... 
[root@atrius.ath.cx]# 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

receive.txt – file received in receivelog.txt 
 
BEGIN 
This is a test of the SCRYPTO Example Protocol 
Implementation included with Russell Ryan's 
International Baccalaureate Extended Essay. 
 
If you are reading this right now, then the transfer worked. 
The following list of numbers is the first 5 terms  
of an arithmetic series with constant interval 5,  
starting at 1. This is an easy method of verification: 
1 6 11 16 21 
 
This is the last line of data. 
EOF 
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